
Demonstrating Autonomous Mission Operations

Onboard the International Space Station

Jeremy D. Frank ∗ David Iverson ∗ Christopher Knight ∗ Sriram Narasimhan ∗

Keith Swanson ∗ Michael S. Scott ∗

May Windrem ∗

NASA Ames Research Center, Mail Stop N269-3, Moffett Field, California 94035-1000, U.S.A.

Kara M. Pohlkamp † Jeffery M. Mauldin † Kerry McGuire ‡

Haifa Moses ‡

NASA Johnson Space Center, 2101 NASA Parkway, Houston, TX 77058, U.S.A.

The NASA Autonomous Mission Operations (AMO) project conducted an experiment
to turn over operation and management of selected International Space Station (ISS) sys-
tems to the on-board crew. ISS crews managed two different spacecraft systems: the Total
Organic Carbon Analyzer (TOCA), a water quality analyzer, and Station Support Com-
puters (SSC) laptops, which are non-critical crew computer systems. These systems were
selected because they are representative of systems a future crew may need to operate au-
tonomously during a deep space mission. The crew autonomously operated these systems,
taking on mission operations functions traditionally performed by support teams on the
ground, using new software tools that provide decision support algorithms for planning,
monitoring and fault management, hardware schematics, system briefs, and data displays
that are normally unavailable to the crew. The experiment lasted seven months, during
which ISS crews managed TOCA and SSCs on 22 occasions. The AMO software processed
data from TOCA and SSCs continuously during this seven month period. The combined
performance of the software and crew achieved a 88% success rate on managing TOCA
activity, the system for which ground-truth was available.

I. Introduction

For over 50 years, NASA’s crewed missions have been confined to the Earth-Moon system, where speed-
of-light communications delays between crew and ground are practically nonexistent. The close proximity
of the crew to the Earth has enabled NASA to operate human space missions primarily from the Mission
Control Center (MCC) on the ground. This ground-centered mode of operations, with a large, ground-based
support team, has had several advantages: the on-board crew could be smaller, the vehicles could be simpler
and lighter, and the mission performed for a lower cost.

NASA is now investigating future human spaceflight missionsa that include a variety of Martian desti-
nations and a range of Near Earth Asteroid (NEO) targets. These possibilities are summarized in Figure 1.
The table shows the approximate distance between the destination and the Earth, where the control center
will be located, and the one-way light-time delay between the destination and Earth.

∗Intelligent Systems Division, NASA Ames Research Center, Mail Stop N269-3, Moffett Field, California 94035-1000, non-
Member.
†Flight Operations Directorate, NASA Johnson Space Center, 2101 NASA Parkway, Houston, TX 77058, non-Member.
‡Human Health and Performance Directorate, NASA Johnson Space Center, 2101 NASA Parkway, Houston, TX 77058,

non-Member.
ahttp://www.nasa.gov/sites/default/files/files/NextSTEP-EMC-Reference.pdf

1 of 24

American Institute of Aeronautics and Astronautics

https://ntrs.nasa.gov/search.jsp?R=20190000220 2020-05-09T19:03:09+00:00Z

Destination Distance (km) Time delay (seconds)

ISS 435 ε

Lunar 38, 400, 000 1.3

NEOs(close) variable variable

Mars(close) 545, 000, 000 181.6

Mars(opposition) 4, 013, 000, 000 1337.6

Figure 1. Destinations.

As is evident from Figure 1, missions beyond the Moon will be of much longer duration, and put crews
much further from Earth, than today’s missions. Accordingly, NASA has recently funded a number of
projects1 to develop and test operations concepts for these future missions. Of significant importance is
the balance between crew autonomy and vehicle automation. Future crews need both the authority to make
decisions without inefficient communication back and forth with ground-based mission control. They will
also need sufficient information and vehicle capability to make, and implement, those decisions. However,
small crews cannot take on all functions performed by ground today, and so vehicles must also be more
automated in order to reduce the number of tasks that crews are responsible for performing.

Previous work2 has been done to evaluate autonomy concepts in terrestrial simulations; additional work3

has been performed to develop best practices in creating human spaceflight procedures for crews to perform
with little or no assistance from ground. However, to date, no experiments have been conducted in which a
spacecraft crew has autonomously managed complex space systems with no assistance from ground. Terres-
trial simulations are insufficient to advance the state of the art; the transition of actual mission operations
tasks, respecting the constraints of flight hardware, and integration of novel technology with operational
spacecraft, are all needed to demonstrate transition of responsibility to onboard crew.

The NASA AMO project conducted an experiment to turn over operation and management of selected
ISS systems to the on-board crew. The systems selected spans two types of ISS hardware: the Total Organic
Carbon Analyzer (TOCA), a water quality analyzer, and Station Support Computer (SSC) systems, non-
critical crew computer systems. These systems were selected because they are representative of systems
a future crew may need to operate autonomously during a deep space mission. The crew autonomously
operated these systems, taking on mission operations functions traditionally performed by ground. They
did so with the aid of new software tools that provide decision support algorithms for planning, monitoring
and fault management, hardware schematics, as well as system briefs, and data displays that are normally
unavailable to the crew. The resulting experiment lasted seven months, during which ISS crews managed
TOCA and SSCs on 22 occasions. The AMO software processed data from TOCA and SSCs continuously
during this seven month period. The combined performance of the software and crew achieved a 88% success
rate on managing TOCA activity, the system for which ground-truth was available.

This paper will describe the design and performance of the software used during the experiment. The
paper is organized as follows. Section II describes the experiment concept of operations and deployment
environment onboard ISS. Section III describes the AMO software design and components in more detail.
Section IV describes software integration and the behavior of the AMO software during different operating
scenarios. Section V describes the AMO ground system and how it mirrors the behavior of the on-orbit
software. Section VI describes the operational complexity of the experiment. Section VII describes the quan-
titative results of the on-orbit experiment, both in terms of how the ISS crew used the software, and in terms
of rating the correctness of both the software and crew with respect to ground-truth results for TOCA.
This section also contains lessons learned for the design of similar systems to enable autonomy. Finally, we
conclude and discuss potential future work.

II. Autonomous Operations Hardware and Concept of Operations

In this section we describe the experiment in more detail. We first describe the concept of operations and
crew responsibilities. We then describe the ISS subsystems operated by the ISS crew. Finally, we describe
the environment in which the decision support software used by the crew is deployed onboard the ISS, and
its principle interfaces to other ISS on-board software systems.

2 of 24

American Institute of Aeronautics and Astronautics

II.A. Crew Autonomous Operations Activities

Each week, the crew used the AMO software to provide the ground with a recommendation of the TOCA
activities required for the next planning cycle (two weeks out). The software kept track of activities required
by time or use counts (some activities are required every month, some were required every X runs, etc.).
The crew had the ability to override software recommendations, not request activities, and request other
activities not recommended by the software, as required. Crew recommendations were compared to the
activity requests provide by flight controllers to determine if the crew’s recommendations were correct.

After each TOCA analysis, the crew used the AMO software to determine if TOCA performed nominally,
and if the Total Organic Carbon (TOC) in the water was within or out of trend. If the crew had a question
regarding TOCA they were asked to first consult AMO software to see if they can answer their own question
prior to calling the ground. The AMO software includes technical references, schematics, and just-in-time
training to assist the crew with evaluating TOCA performance. If either water quality or TOCA hardware
performance was deemed off-nominal, the crew was asked to use AMO software to provide their next step
recommendation. AMO software provides its own evaluation of the above questions to aid the crew.

The AMO software also collects and analyzes performance parameters from each SSC onboard, and flags
off-nominal performance. For detected off-nominal performance, the AMO software provides the crew with
a troubleshooting recommendation. The crew was directed to look for SSC alerts when using the software
for TOCA tasks, or to consult the software when SSC performance was off-nominal.

In the next sections, we describe these ISS systems and their management in more detail.

II.B. Total Organic Carbon Analyzer (TOCA)

The TOCA is used to analyze the crew’s potable water supply. It measures the TOC in the water as a
proxy for water quality. The TOC is distinguished from Total Inorganic Carbon (TIC) during the analysis
phase. Water quality activities are performed either by the crew manually opening a valve to the water
supply, or by filling a small bag with water from the ’sink’, called the Potable Water Dispenser (PWD).
A single water analysis activity takes approximately three hours, during which the TOC is measured three
times. A single analysis comprises 22 intermediate processing states. One or two water quality activities are
performed weekly. Water quality results are provided to the crew via a display on the TOCA hardware,
but in-depth analysis both of water quality trends and TOCA hardware performance (fault and anomaly
detection) is performed by MCC. TOCA management also requires scheduling of maintenance activities,
including calibration and replacement of some components. TOCA produces hardware performance data for
dozens of parameters at a rate of 1 Hz. The responsibility for managing the TOCA activity schedule is with
ground, as is water quality analysis, TOCA hardware health assessment, and any fault isolation or recovery.

II.C. Station Support Computer Laptops

The ISS crew has access to 23 Lenovo T61P computers; these are referred to as SSC laptops. These laptops are
used for a variety of purposes, including access to the crew’s daily mission plan, operational procedures, non-
critical operational tools, and a variety of crew personal uses (email and entertainment). Flight controllers on
the ground are responsible for all network and computer management functions to maintain these computers,
including routine software maintenance, performance monitoring, and trouble shooting.

II.D. Deployment Environment

The ISS deployment environment and major interfaces are shown in Figure 2. The ISS Operations LAN
consists of a network of T61P laptop computers, Apple iPads, and other devices. One of these (LS1) runs
a Debian Linux server. A number of Virtual Machine (VM)s act to serve various applications, one of which
is the AMO software. AMO consists of a variety of components that provide data to Web clients via an
Apache web service. Clients run on either T61P laptops running Windows 7, with the Internet Explorer web
browser, or Apple iPads running the Safari web browser. Another VM hosts the free, off-the-shelf Icingab

network monitoring system for collecting SSC health and status. Icinga consists of collection and analysis
services and a Postgres database. AMO indirectly interfaces with Sambac, a set of “daemons” on LS1, which
provides a number of network services.

bhttps://www.icinga.org/
chttps://www.samba.org/

3 of 24

American Institute of Aeronautics and Astronautics

schtask
OHM

Windows
NSClient++

Safari IE11

Debian KVM
Icinga VM

Postgres
Icinga

Web Service
AMO server

AMO

Network Svcs
Samba

Debian KVM
AMO VM

iOS6
iPad

Windows 7
T61-P

Windows 7
T61-P Debian

T61-P

Air-Ground
SWRDFSH

File Dissemination
Ground mirroring

MCC

SSC Client LS1 Server

TOCA
WINCE

TOCA

Wired
Wireless

OPSLAN

Figure 2. AMO Deployment Environment and Major ISS Interfaces

The TOCA hardware is connected to the Operations LAN via hardline ethernet to communicate files
after each water processing run. AMO accesses these via the Samba fileshare services. SSC data is collected
from multiple sources, including NSClient d and Open Hardware Monitor (OHM), an open-source tool for
monitoring computer performance parameters (temperatures, disk speeds, etc) e. This data is polled by the
Icinga software running in the Icinga VM on LS1; AMO, in turn, pulls data from the Icinga VM.

AMO both produces files to send to ground, and reads files sent to the ISS from ground during its
operations. A more complete description of this interface are provided in Section V.

Finally, the AMO software has embedded web links to the International Procedure Viewer (IPV), an ISS
Web-based application. This application runs on a second server computer, ISS-Server-1, and is not shown
on Figure 2.

III. AMO Software Design and Architecture

The AMO VM consists of a variety of components that perform analysis and provide data to the User
Interface (UI), via the Web service, in response to a variety of events. These events include user activity on
the AMO UI via the Apache web service, the creation of files on the shared file system, or internal clocks.
This architecture is described in more detail in Section III. The components perform analysis functions such
as anomaly detection fault detection, scheduling, monitoring limits, pulling data, and writing logs. Each
component is described in more detail below.

III.A. The User Interface

The AMO User Interface (UI) is implemented as a single-page application presented to the user via a Web
Browser. The elements of the UI each serve one of the functions described in section II. In the following
sections we describe the server elements that produce dynamically generated content for the UI, or generate
or react to files.

The AMO UI is a Web application. As a result, the UI benefits extensively from the use of HTML
links. These links allow the user to rapidly navigate from one function within the AMO UI to another. The
AMO UI is driven by a number of static and dynamically generated files. The static files are HTML; the

dhttp://www.nsclient.org/
ehttp://openhardwaremonitor.org/

4 of 24

American Institute of Aeronautics and Astronautics

Figure 3. TOCA UI screenshot, showing the main UI function tabs across the top, and the Results of an off-nominal
sample showing a fault and recommended actions.

dynamic content is JSON formatted, and is designed to be read by specific parts of the UI. Each JSON file is
produced by server components described in the next section. Early in the design process, it was clear that
the AMO UI must be designed to be presented either on a T61P or an iPad. The physical form factor of each
device is different, and the iPad can be reoriented to portrait or landscape mode. The touchpad interface
on the iPad presented design challenges for the layout and usability of the UI. Finally, factors such as the
amount and complexity of data to present, font size and color constraints, and number of required operations
(menus, scrolling, etc) desired to access information, all influenced the final design. Extensive user studies
were invaluable in honing in on the final design.

III.A.1. TOCA UI

The TOCA UI contains functions that present data to the crew, allowing them to manage TOCA. Each of
these functions are accessible via ‘tabs’; the tabs are organized hierarchically.

The Results tab presents the results of each TOCA analysis activity. A quick-look pane shows the sum-
mary results of each sample, any hardware generated fault messages, and also shows nominal and off-nominal
status for TOC, device performance (faults), and device historic comparison (anomalies). Each sample is
deemed Nominal if each of the above assessments reports nominal, and Off-nominal otherwise. Water quality
is determined to be off-nominal if the TOC trend, as measured over consecutive samples, is out of a pre-
defined range; this range is changed periodically based on expert judgement of TOCA engineers and flight
controllers. If the TOC is above the potable limit, any of the three TOC measurements are above the potable
limit, or if the relative standard deviation of the samples is too high, this is noted for the sample. Faults
or anomalies are detected from a combination of TOCA software fault messages and the output of AMO
server components. If any element of a TOCA analysis activity is deemed off-nominal, the UI presents one or
more Recommended Actions. Examples of all of these features are shown in Figure 3. These actions provide
descriptions of the steps the crew can take to either identify a fault, or understand an off-nominal result.
Entries in the Results tab can be sorted by date, sample type, sample number, and nominal-off-nominal
result.

The Data tab presents data plots showing accumulated results over all uses of the TOCA hardware
(Trend), as well as data for individual TOCA analysis activities (Per-Run). TOC measurements from each
sample are grouped into series based on the type of analysis performed (Hose, Hot PWD, Ambient PWD,
and Calibration Check). Error bars are provided for the Calibration Check series. The TOCA device cannot
detect carbon below a certain threshold, and the carbon content cannot exceed a threshold for the water
to be safe to drink; these limits can be visualized on the trend plots. The TOCA processing states can
be visualized on the Per-Run plots. All plots have a zoom-in zoom-out and plot overview feature. Where
applicable, sensor readings are plotted with a nominal performance region overlay, showing the historical

5 of 24

American Institute of Aeronautics and Astronautics

Figure 4. TOCA data plots. Nominal Performance Regions are shown in blue.

behavior of these sensor values throughout a run; this allows easy visual determination of deviations from
the normal region over time. Figure 4 shows a plot with the nominal performance region shown in blue.
The remaining per-run plots have upper and lower limits beyond which software fault messages or hardware
faults are generated; these are shown on the plots. All plots also have a description of how the plot should
look if TOCA is behaving as expected. Figure 5 shows a list of data from TOCA that is provided to the
crew in plot form.

Parameter Per-Run/Trend

TOC Trend

Liquid Flow Average (React TOC) Trend

Oxidizer Voltage Trend

Liquid Flow Rate Per-Run

Maximum Oxidizer Voltage Per-Run

Minimum Oxidizer Voltage Per-Run

Oxidizer Voltage Per-Run

Temperatures (9) Per-Run

Pressures (4) Per-Run

Figure 5. TOCA Data presented to crew in plot form.

The Plan Input tab allows crew to either request the scheduling of tasks that are recommended by the
scheduler, or manually recommend tasks. The time horizon for the plan is three weeks, including the current
week. The Plan Input tab shows, for each task, its status (Recommended, Requested, Scheduled, Completed),
a link to the procedure for each task, a rationale explaining why each task is requested, a user-editable crew
note, and action buttons allowing crew to take actions based on the task status. Recommended tasks can be
Requested; Requested tasks can be Canceled. In addition an Activity History button shows all previously
performed tasks; the activity history can be sorted by activity type, procedure, sample number, due date
and execution date.

The Components tab includes schematics and photos showing TOCA with and without the exterior panel
removed. In addition, a photo and short functional description of each major part of TOCA is provided.
Each part has a closeup photo and a description of the part. Due to the small screen size, each schematic has
a magnifier allowing the user to zoom in on the schematic. The Components tab also includes a description
of the TOCA processing states, and shows what elements of TOCA are active during those states.

The Fault Indicators tab allows the crew to identify TOCA hardware faults. The hardware faults trip in
the event TOCA experiences a fault that causes it to power down. There are four fault indicators forming
a 4-bit fault pattern. The crew can use the Fault Indicator Tab to replicate the fault pattern and see what
condition may have caused this problem.

The References tab is a searchable list of each TOCA procedure, component name, processing phase,
hardware and software fault messages, plot descriptions, and links to instructional videos.

6 of 24

American Institute of Aeronautics and Astronautics

Figure 6. The SSC Overview page showing 20 active SSCs. One SSC (19) is reporting one problem, shown in yellow.

III.A.2. SSC UI

As with the TOCA UI, the SSC UI contains functions to allow the crew to manage SSCs. The SSC UI is
organized in a similar manner to the TOCA UI.

Figure 7 shows the performance parameters collected and analyzed for each SSC, and limits used to
determine if an SSC is off-nominal. The Overview tab shows the status of each of the 23 SSCs onboard ISS
at a glance. As with TOCA results, each SSC is either deemed Nominal or Off-Nominal. Off-nominal SSCs
are colored yellow in the Overview tab, and nominal ones are colored green; the color of an SSC indicates
whether the last retrieved data shows off-nominal behavior. An SSC can also be considered Offline if it has
not reported three or more of the parameters for a period of time. An icon also indicates whether an SSC
is on the wired, wireless or both networks. If an SSC is considered off-nominal, the number of problems is
shown in the upper right corner. The date and time of the last reported state is also shown. SSCs displayed
in the Overview tab can be sorted by their name, location onboard ISS, last update, or their status. The
Overview tab is shown in Figure 6.

The Details tab shows more information about the state of each SSC. Each SSC reports network latency,
uptime, hard drive space usage, memory usage, CPU utilization, and temperatures for each CPU core and
the hard drive. Each of these parameters has a nominal performance limit, shown in Figure 7; if these
limits are exceeded, an Alert is generated. A list of historical alerts is shown to the right. Figure 7 shows
examples of several SSC alerts as they appear in the UI. If the SSC’s current state triggered an alert, a list
of recommended actions is also provided; one such recommendation is also shown in Figure 7. The crew can
navigate to different SSCs using a drop down menu or arrows.

Parameter Limit

Uptime 7 days

Latency 500 ms

CPU Util. 100%

Memory 80 %

Hard Drive 90 %

CPU Temp 80 ◦C

HD Temp 60 ◦C

Figure 7. SSC alerts and SSC thresholds used to generate alerts.

The Data tab allows the crew to drill down into plots of each of the parameters. As with TOCA, the
plots allow zooming, have an overview, and a description of how the plot should look if SSCs are behaving
as expected. AMO stores 5 weeks of SSC data for presentation to the crew. The threshold for nominal

7 of 24

American Institute of Aeronautics and Astronautics

performance is shown on each plot.
The References tab contains a searchable list of AMO procedures, recommended actions, plot descriptions,

definitions, and help videos.

III.A.3. Help UI

The Help UI contains a quick-reference menu on the right. This menu is divided into Videos, TOCA help,
and SSC help. Five videos are provided; one AMO overview video, and four videos describing various TOCA
operations. Links are provided to short overviews of the principle TOCA and SSC management functions
described above.

III.B. SSC Data Collection

The ISS program uses NSClient to collect network latency, uptime, hard drive space usage, memory usage
and CPU utilization data. While the ISS program analyzes this data on the ground, AMO performs a simpler
analysis onboard to present a simpler form of SSC state and recommendations to the crew. The OHM software
was deployed on each SSC to collect additional information about SSC performance, specifically CPU core
and hard drive temperatures. Each parameter is collected once every 10 minutes (1

600 Hz). As mentioned
previously, this data is processed and stored in Icinga onboard, and then pulled for processing by AMO.

III.C. Air to Ground Link

AMO sends and receives files over the Air-Ground link using a NASA developed system called SWRDFSH.
There are three main uses of the air-ground link: schedule synchrony, AMO log downlinks, and AMO config-
uration uplinks. When the crew decides to either manually add a task or recommend a task, this information
is recorded and sent to the ground. Since TOCA is a critical ISS system, TOCA activities are scheduled by
flight controllers on the ground. The TOCA specific activities are extracted from the Short Term Plan, the
crew’s daily activity plan, and are uplinked daily to ISS. This ensures that scheduled TOCA activities are
accurately reflected in the AMO UI Plan Input tab. In addition, all AMO UI usage is logged for analysis;
these logs are sent to ground as well. This downlink is performed three times daily. Finally, the AMO UI
Configuration file allows extensive reconfiguration of the AMO system. Examples of configuration changes
include the TOCA and SSC thresholds and Scheduler frequencies. This file is uplinked on an as-needed basis.

III.D. The AMO Server Components

The AMO UI displays a variety of dynamically generated data produced by AMO server components. These
components interact with the files and data produced by SSCs and TOCA, as well as responding to data
updates (either schedules or configuration file changes) from the ground delivered over the Air-Ground link.
The AMO server also generates a number of data products that are delivered to ground for display and
analysis purposes. This section describes the principle software functions of the AMO server. The server
architecture is shown in Figure 8. The functional components of the server are described in the following
sections.

III.D.1. Monitor

The AMO Monitor watches the shared file space for new TOCA result files. When new files are detected, the
AMO Monitor invokes the Anomaly Detection, Fault Detection and JSON Writer functions to process the
TOCA files. The resulting data files are written to populate the TOCA Results and Data tabs. The Monitor
retrieves SSC data once every 60 minutes by invoking the AMO SSC Cache function. After retrieval, Limit
Checks are performed, and again JSON Writer is called to generate data files to populate the SSC Overview,
Details and Data tabs. Once a day, a new schedule is uplinked. The uplink occurs at varying times since it
depends on when the authoritative ground schedule is made available. This file is retrieved by the Monitor,
and subsequently processed by the Scheduler. Whenever a crew person interacts with AMO via the UI,
user activity is logged for later analysis. These logs are recorded and downlinked daily; more information
about the logs is presented later in the paper. Three times a day (0800, 1200 and 1600 GMT) AMO writes a
consolidated log of all files that have changed since the last time logging was performed. These files are moved
to the shared file space, and retrieved over the Air-Ground link. Each time the AMO Monitor performs these

8 of 24

American Institute of Aeronautics and Astronautics

Apache httpd
AMO server

AMO

Apache httpd

AMO Web
Services

Executive
AMO Monitor

Anomaly
Detection
(TOCA)

IMS

Fault
Diagnosis
(TOCA)

HyDE
File System
JSON Writer

Scheduler
(TOCA)

Scheduler

SQLite (SSC)

AMO SSC
Cache

<<file>>
Scheduler

Requests
<<file>>
Scheduler

Schedules

<<file>>
Configuration

<<file>>
Logs

Fault
Detection
(SSC)

Limit Checker

<<file>>
AMO Monitor
AMISS
HyDE

TOCA
Samples

<<file>>
HTML

Static
Content

<<file>>
json

Dynamic
Content

Python HTTP

AMO Logging
Services

<<file>>

Keystroke
Logs

Figure 8. The AMO Server Architecture.

operations, it reads the AMO Configuration file anew. This way, any configuration changes are automatically
reflected in the processing performed by any of the components, and the newly generated dynamic content
for the UI. However, no retrospective processing of historical data is performed when configuration changes
are made. AMO ensures that no two TOCA samples are processed at the same time. It ensures any new
TOCA samples are processed, regardless of the sample number. It ensures TOCA and SSC processing is not
performed at the same time. It also enforces timeouts to terminate the processing of jobs if they take too
long.

Activity Timing

SSC retrieval 60 minutes

Downlink log 0800,1200,1600 GMT

IMS Timeout 5 minutes

HyDE Timeout 5 minutes

JSON Writer timeout 5 minutes

SSC Processing timeout 30 minutes

Figure 9. Timing of AMO Monitor activities.

III.D.2. Scheduler

The Scheduler takes as input the constraints on the water sampling and maintenance activities, and the prior
history of performed activities, and produces a three week TOCA sample and maintenance activity schedule.
Constraints on maintenance activity are expressed either in calendar terms, or in terms of the number of uses
of TOCA. The Hose sample activity is to be performed weekly; the Bag Sample is performed monthly, but
actually consists of bi-monthly analyses of hot water and ambient water temperature samples. Some of the
constraints result in activities scheduled roughly every month (e.g. the Waste water bag changeout), while
others can be much longer (the Buffer container changeout ends up being an annual activity). The Calibration
Check activity actually requires running a Hot and an Ambient samples, and therefore uses TOCA twice.
Any instance in which TOCA is turned on but fails to complete an analysis for any reason counts as usage

9 of 24

American Institute of Aeronautics and Astronautics

when considering maintenance activities. Of all the activities, only the Calibrate is not regularly scheduled;
a Calibrate is needed only if a Calibration Check fails. The Scheduler provides an interface for other AMO
components to make recommendations based on their TOCA processing results. In the case of Calibration
Check activities, the failed Cal-Check is detected by Hybrid Diagnosis Engine (HyDE), which instructs the
Scheduler to recommend a Calibration activity.

A number of other considerations apply when determining the order in which recommended activities
should be performed. TOCA has a duty cycle constraint; it can operate for at most five hours a day. This
effectively constrains TOCA activities to one a day, since processing a sample can take as much as three
hours. It is possible that multiple activities can be recommended by the Scheduler to occur on the same day.
When this happens, the Scheduler will recommend the least frequently scheduled activity prior to the more
frequently scheduled activities. Because of the different ways that frequency is expressed in the scheduling
constraints (by weeks vs by number of uses of the TOCA), this rule is implemented by determining which
recommended activity was actually performed longest ago. Also, recall that Calibration Checks require both
a Hot and Ambient sample, and these checks must be scheduled on different days; the Ambient temperature
activity is scheduled before the Hot activity. There is one remaining nuance to scheduling, which is how to
treat either Requested activities (those a crew person has tentatively placed on the schedule), and Scheduled
activities that have not yet been performed. These activities are treated as Completed for the purpose of
looking ahead and recommending activities for the future weeks.

These constraints are described more concisely in Figure 10 below.

Activity Type Frequency

Hose Sample Nominal 1 week

Bag Sample (Hot) Nominal 2 months

Bag Sample (Ambient) Nominal 2 months

Calibration Check Maint 3 months

Waste Bag Changeout Maint 6 Runs

Buffer Container changeout Maint 47 Runs

Calibrate Maint Cal.Check failed

Figure 10. TOCA Activity Constraints.

The computational complexity of the resulting scheduling problem is linear in the number of prior activ-
ities. The algorithm works as follows:

1. Scan backwards through the activity history to find the latest execution date of each activity type with
a calendar based activity frequency, da. Simultaneously count the number of TOCA usages u since the
last Waste Bag Changeout and the last Buffer Container Changeout.

2. Let t be the date of the last day of the current week. For each calendar frequency based activity type
let fa be the execution frequency in Figure 10. For instance, if the activity a is Hose Sample, then fa
is 1 week. If t− da ≥ fa then activity type a is recommended for the current week.

3. If the number of TOCA usages u exceeds the frequency of either a Waste Bag changeout or Buffer
Container changeout, recommend these activities.

4. Once all activities for this week are known, order them such that the least frequently performed
activities (according to Figure 10) are recommended first. Update the latest execution dates da of all
activities recommended this week, and update u. These updates ensure activities recommended in a
prior week are correctly accounted for when recommending activities for the next two weeks.

5. Repeat steps 2-4 for the next two weeks.

The Scheduler can determine the completion status of activities from TOCA log data. This can be done
only for sampling activities. The Scheduler also determines the completion status from the daily plan updates.
These may sometimes override the status in the TOCA log data.

Whenever the crew recommends or cancels a recommendation, or a new schedule is uploaded, the schedule
is recomputed.

10 of 24

American Institute of Aeronautics and Astronautics

Figure 11. The TOCA Plan Input Tab, showing a combination of Scheduled, Recommended, and Requested activities.

Figure 11 shows the Plan Input tab. In this figure, there is a Waste Bag changeout, one Bag Sample
activity, and three hose sample activities. The Waste Bag changeout activity is ordered first, since of the
tasks in this three week window, it was last executed longest ago. The first Hose Sample activity is Scheduled,
while the second has been Requested, and the third has been Recommended but not yet Requested. The
Bag Sample activity is scheduled last, and has also been Recommended but not Requested. The crew can
Request the two hose samples that are presently Recommended; when ground decides to schedule them, they
will be displayed as Scheduled.

The Scheduler takes as input the current schedule of activities, and updates the Plan Input UI to show
which activities are scheduled. Doing this requires some processing of the crew’s Short Term Plan, an input
to other ISS operational tools, to extract and interpret the specific activities we need for our purposes. For
example, activity names in the plan are used to find TOCA related activities, but often it is the procedure
name, which is referenced in the activity, that informs us of which specific TOCA activity is scheduled. To
determine water temperature for PWD sampling we look for a separate water collection activity scheduled
within 24 hours previous to the sampling activity. The water temperature is parsed from the Execution Notes
field for the collection activity. To find Calibration activities, we look for two separate activities named Hi-Cal
and Low-Cal scheduled on consecutive days.

III.D.3. Anomaly Detection

TOCA anomaly detection is performed using two algorithms. The Inductive Monitoring System (IMS) 4 is
used to learn a model of the nominal performance of TOCA using recorded data gathered from prior runs.
This process is referred to as ’clustering’. Different clusters are build for each TOCA processing state. At
each instant or time step, the behavior of the system as represented by a set of parameters can be considered

a vector of numbers. The Euclidean distance δ(v1, v2) on two vectors of length j is
√∑

j(v
j
1 − vj2)2. A cluster

c is represented by cjh and cjl , the highest and lowest values respectively of parameter values of the vectors

assigned to the cluster. Define cja =
cjh−c

j
l

2 , and denote ca as the vector of cjas. In order to build the clusters
from device performance data, the following algorithm is used:

• Each vector v is first scaled and normalized.

• Suppose there are C clusters, the closest cluster c′ = minc∈C δ(v, ca) is identified.

• If δ(v, c) ≤ ε then v is added to c, and ch and cl and ca are updated, otherwise a new cluster is created.

The value ε can be used to tune the number and sizes of the clusters.
Once the clusters are created, new instances of TOCA device behavior, denoted b, can be compared

to the previously learned behavior, and the distances δ(b, c) are computed. In previous incarnations of
IMS, minc∈C(δ(b, c)) was computed, and compared to a limit; if the new vector b exceeded the limit, an
anomaly was declared. The clusters IMS builds fit the TOCA data well, but distances vary considerably

11 of 24

American Institute of Aeronautics and Astronautics

with time, even within a processing state. First, the weighted average (based on the number of training
instances in a cluster) of the distances to the n closest clusters in C is built for each training instance;
denote this quantity δ(v, nC). This weighted average distance is computed using the same training samples
used to build the clusters. An adjunct to IMS, the Meta Monitoring System (MMS) system, uses a more
robust means than a simple limit on the distance to detect anomalies. Denote the probability distribution of
weighted average distances δ(v, nC) for processing phase r by p(δ(v, nC , r)). Then the cumulative distribution
F (δ(v, nC , r)) =

∑
δ′(v,nC ,r)≤δ(v,nC ,r)

p(δ′(v, nC , r) is computed. As with building the IMS clusters, this can

all be performed offline. For a new vector of system behavior b observed during processing phase s, δ(b, n, s)
is computed. The quantity F (δ(b, nC , s)) is then determined from the appropriate cumulative distribution
F (δ(v, nC , r)) with s = r f. If this quantity exceeds a threshold (currently .975) a sufficiently large number
of times, an anomaly is declared.

Recall that the TOCA hardware produces data at a rate of 1 Hz. The TOCA hardware processing time
varies, but is typically under three hours. TOCA performs three independent measurements of the TOC,
and hence some processing states are repeated three times. The duration of each state varies from a few
seconds to tens of minutes. In discussions with the TOCA hardware engineers, the TOCA Liquid Loop
was considered the most likely TOCA component to exhibit off-nominal behavior. Six TOCA performance
parameters characterize Liquid Loop performance. Most, but not all, of the parameters were available for
display on the Data plot. As noted above, TOCA has many processing states; separate IMS and MMS models
are constructed for each processing state. Some processing states are repeated multiple times, but all data
from those states is used to build the IMS and MMS models for that state. The data was created from 46
TOCA data analyses performed prior to the deployment of the software onboard ISS. The number of clusters
per phase ranged from about 1300 to 15000.

Figure 12. Anomalous behavior, as shown by weighted average distance, of ReactTIC Phase (left) vs nominal behavior
(right). Gold points show the weighted average distance ofTOCA; the red line shows the threshold for anomalous
behavior.

Figure 12 shows an example of IMS output. As described previously, IMS determines whether TOCA
is behaving anomalously, and indicates the specific processing phase in which the anomaly was exhibited.
In this case, 12 shows two examples of the weighted average distance δ(b, n, s) to the closest clusters of one
phase (React TIC) of TOCA processing. In the figure on the left, the ReactTIC phase is behaving more
anomalously; a large number of the measured distances (shown in Gold) are above the ’nominal’ behavior
distance (shown in red). By contrast, the right hand figure shows δ(b, n, s) during a nominal ReactTIC phase;
there are significantly fewer data points whose distance exceeds the ’nominal’ distance.

fIn fact a weighted sum of the recently encountered percentiles is computed, but these details are less important than the
essential idea.

12 of 24

American Institute of Aeronautics and Astronautics

III.D.4. Fault Diagnosis

HyDE is a model-based fault diagnosis engine that diagnoses discrete faults.5 HyDE takes as input a model
that describes the combined discrete and continuous behavior of the components of the system. The model
consists of discrete modes of operations, relevant variables and parameters of the modes, and how these
variables relate to each other in different modes of operations. HyDE uses sensor data from the system and the
model of the system behavior to deduce the evolution of the state of the system over time, including changes
in state indicative of faults. Transitions between modes are based on either commands or conditions on the
internal variables. Faults are represented as special unknown event transitions. HyDE supports modeling
of variables and relations in different domains like Boolean, enumeration, real-valued and interval-valued.
HyDE’s reasoning algorithm tries to determine the modes of all components, values of all variables, and
the occurrence of one or more unknown events in the system. The reasoning starts with the assumption
that no unknown events have occurred, and all modes and variables have their initial values. Any available
sensor observations are compared against predictions from the model. Inconsistencies between predicted and
observed states generates conflicts; each conflict is a set of unknown event transitions that contribute to each
inconsistency. A search over the space of unknown events driven by these conflicts results in the generation of
one or more fault states that would resolve the inconsistencies. The number of possible faults is configurable,
which limits the possible explanations. Further simulation with these potential candidates would determine
which potential candidates become actual diagnoses. This process continues over time as more and more
observations become available.

AMO used a HyDE model of the TOCA Liquid Loop. All components (like Sample Bag, Hose, Valves,
Oxidizer, etc.) have corresponding components in the HyDE model. Each sensor is also modeled as a com-
ponent. Variable values in the model are simplified to represent nominal, high or low sensor measurements;
these categories are derived from the TOCA fault tables, as described further below. The relations over these
variables then correspond to how these variables are affected by the underlying physical relations. Modes of
operation of components include nominal modes plus failure modes that were determined by an analysis of
faults already exhibited by the system and the common failures for components in the system. The TOCA
HyDE model includes a failure mode for each sensor and failure modes for Sample Bag Underfilled, Hose
Valve closed, a failure mode each for the Oxidizer, Valves, Pump, and Waste Container, and two Chiller
failures (high and low temperature). Figure 13 enumerates the TOCA faults HyDE can detect.

Fault Type Number of Faults

Sensor Faults 27 of Faults

Valve Stuck 12 (6 valves, open/closed)

Sample Bag 1 (Underfilled)

Hose 1 (Closed Valve)

Waste Container 1 (Full)

Acidic Buffer Dispenser 1 (Faulty)

Sample Circ Pump 1 (Failed)

Oxidizer Reactor 1 (Faulty)

Chiller 2 (Under Chill/Over Chill)

Pipe 1 (Clogged)

Figure 13. TOCA Fault diagnoses.

The HyDE server component reads the TOCA data file, maps columns to corresponding HyDE variables
and then converts to the values to the enumeration domain using the fault table file provided by TOCA
experts. The fault table identifies whether the values are nominal, high or low in different modes of operation
of TOCA. The TOCA logs also note the change of state of valves (open to closed); HyDE issues an appropriate
command to the valve in the model in response. After data at each time step has been presented to HyDE, its
reasoning is invoked to update the diagnosis. When the data generated by TOCA includes off-nominal values,
HyDE uses the reasoning described earlier to diagnose faults. Typically, when only one value is off-nominal,
the corresponding sensor is considered to be suspect. This can be achieved by tuning HyDE to pick sensor
faults over single component faults first. If more than one sensor if off-nominal, then the conflict directed

13 of 24

American Institute of Aeronautics and Astronautics

Hose connection
Faults:
Closed

Luer
Bag connection
Faults:
Empty

Q/D 1

Other TOCA
Components

TOCA

Faults:
Stuck open
Stuck closed

V5

Faults:
Faulty

Oxidizer Reactor

Faults:
Failed

Pump

Faults:
Stuck open
Stuck closed

V4

Faults:
Faulty

P2

Faults:
Faulty

P1

2.
candidate

2.
candidate

3.
cmd: luer

1.
off-nominal

1.
off-nominal

4.
excluded

open 1

closed

open 2

V5

stuck
states

cmd

cmd

unexpected

open 1

closed

open 2

V4

stuck
states

cmd

cmd

unexpected

open

closed

Pump

failed

cmd

unexpected

Figure 14. HyDE Model. The left side of the figure shows the components and faults; the right shows the modes and
possible transitions between modes for a subset of the components. The numbered ovals show the evolution of the set
of candidate faults explaining the observed system behavior.

search describe above would result in finding the component that affects all off-nominal observations. After
all data has been presented the final diagnosis is written for further processing by the JSON Writer. Figure
14 shows a fragment of the Liquid Loop model, and a situation when both the P1 Sensor and P2 Sensor
(bottom) are off-nominal. The steps of the search for explanations of the off-nominal readings in the sensors.
In this case the search might identify faults in both the Bag (top middle) and Hose (top left) as possible
candidates, but based on the state of valve V5 (middle), as determined by the actual TOCA data, the Bag
fault is excluded, leaving the Hose fault as the only explanation.

The HyDE component also has the additional task of determining if a Calibration run on TOCA failed.
In order to do this HyDE first checks whether the current run is a Calibration run based on the TOCA
sample file. Then it checks if TOCA performance is nominal based on the results of HyDE and IMS. If
TOCA performance is nominal and the current run is a Calibration run, the application reads additional
TOCA sample log data to determine the expected calibration value of the TOC. The TOC value is read
from the data files and a comparison with expected value determines whether the calibration failed or not.
In the case of a Calibration Check fail, a Calibration activity request is sent to the Scheduler.

III.D.5. JSON Writer

The JSON Writer is responsible for generating the bulk of the dynamic content for the AMO TOCA UI.
This includes the files that drive the TOCA Results Tab (each individual TOCA result plus the drop down
menu), the TOCA Data Tab (each TOCA data plot plus the historical plots), and the TOCA Plan Input
Tab (Calibration activities in Activity History). The AMO Monitor invokes the JSON writer after all other
TOCA data processing is complete.

III.D.6. SSC Limit checks

The SSC limit checks are performed once every 60 minutes. The AMO monitor queries the Icinga VM
and retrieves SSC data, which is placed into an SQLite cache. The data for each SSC is then processed to
determine whether it is offline, whether there are any alerts and when they occurred. It also generates the plot
data for each SSC parameter. The number of off-nominal SSCs is determined and dynamic data is generated
for the SSC Overview and Details Tabs as well as the plots. The SSC Limit checking component creates the
JSON files after processing the SSC data. Note that while the UI shows whether SSCs are simultaneously
connected to the wired and wireless networks, this is not considered an Alert and is not stored in the Alert
history.

14 of 24

American Institute of Aeronautics and Astronautics

IV. AMO Server Component Integration

AMO Server components are integrated at a technical level by the AMO Monitor. As described previously,
this component is responsible for invoking each server side component in response to events. In the next
section we will describe how the components work together in each key scenario.

AMO component integration is also accomplished by knowledge representing what actions the crew must
take if a fault takes place, limits are exceeded, or an off-nominal or anomalous situation is encountered. This
knowledge is explicitly represented in the AMO UI, but the UI behavior is driven by the output of AMO
Server components. For example, if IMS detects an anomaly in TOCA processing, the AMO UI Recommended
Action drop-down in the Results tab will direct the crew to the Data tab, and indicate the processing state in
which the anomaly took place. However, the UI depends on the output of IMS to report the processing state
in which the anomaly took place. Similarly, if HyDE detects a fault, the AMO UI Recommended Actions
drop-down shows the correct recommended action, but based on HyDE output. SSC action recommendations
are driven by the output of the Limit Checker. Finally, the HyDE component can recommend the Calibrate
action to the Scheduler if the Calibration Check action fails. These forms of knowledge reflect the expertise
that a human flight controller would normally bring to bear; they are codified in the complete AMO software
system to provide a decision aid to the crew that stands in for flight controllers who may not be available in
a timely manner.

We now describe how the AMO architecture processes data when a TOCA data file is recieved.

1. A TOCA sample file is delivered to the shared file system.

2. The AMO Monitor component detects this file, determines it is new, and performs some sanity checks.

3. The AMO Monitor invokes IMS.

4. Once IMS is complete, the AMO Monitor invokes HyDE.

5. Once HyDE is complete, the AMO Monitor invokes the JSON Writer.

6. Once the JSON Writer is complete, the dynamically created content is ready for processing by the
Web server and for display on the AMO UI.

The steps performed by AMO in this scenario are shown in Figure 15. The other scenarios are omitted
in the interests of brevity.

V. AMO Ground System

The AMO system onboard produces files that are downlinked daily and then moved to multiple ground-
based instances of AMO. Since AMO is a web service, each of these instances is a version of the same
single-page Web application, accessed via a URL, just as it is onboard ISS. Once the proper JSON files
generated onboard are moved to the right place, ground will see what there crew sees. In addition, once the
TOCA samples are downlinked from ISS for analysis by ground, we can re-process the TOCA samples to
validate the behavior of AMO onboard. Ideally, we would do the same with Icinga database, but we did not
have access to this data for reprocessing. In this section, we describe the process of moving data from ISS
to the ground-based instances, and the purpose of each instance.

The Air Ground Link consists of NASA developed software called SWRDFSH. SWRDFSH essentially
acts like ftp between ISS and the MCC, with additional scripting capability to collect files and move then to
proper directories. Additional NASA developed software called OCAMS6 allows automatic transfer of files
according to a schedule. We scheduled downlink of files three times a day; downlink products included all
dynamically created content. Once downlinked data was resident in the MCC, we automatically retrieved it
from the MCC. Uplinks were nominally scheduled hourly, in order to uplink TOCA schedules extracted from
the crew’s plan as soon as they were available. We manually pushed schedule updates to the MCC because
of the need to manually ensure the extracted schedule had all the needed information in it.

The ground system comprises a total of four mirrors of the state of AMO onboard ISS, each with a
different purpose. The first instance duplicated the state onboard ISS by simply moving the JSON files
generated onboard into the UI, without actually processing either TOCA or SSC data. A second instance
replicated the processing performed onboard once the TOCA sample files are received; this instance mirrors

15 of 24

American Institute of Aeronautics and Astronautics

Apache httpd
AMO server

AMO

Apache httpd

AMO Web
Services

Executive
AMO Monitor

Anomaly
Detection
(TOCA)

IMS

Fault
Diagnosis
(TOCA)

HyDE
File System
JSON Writer

Scheduler
(TOCA)

Scheduler

SQLite (SSC)

AMO SSC
Cache

<<file>>
Scheduler

Requests
<<file>>
Scheduler

Schedules

<<file>>
Configuration

<<file>>
Logs

Fault
Detection
(SSC)

Limit Checker

<<file>>
AMO Monitor
AMISS
HyDE

TOCA
Samples

<<file>>
HTML

Static
Content

<<file>>
json

Dynamic
Content

Python HTTP

AMO Logging
Services

<<file>>

Keystroke
Logs

1

2

3

4
5

6

Figure 15. AMO Server component order of invocation after arrival of TOCA sample file on filesystem. The numbered
circles show the order each component is invoked by the Monitor after a TOCA sample file is detected on the filesystem.

the TOCA UI, but not the AMO UI. Both of these instances are maintained for situational awareness by ISS
flight controllers; even though the instances are ‘fully functional’, allowing e.g. Requesting tasks, adding Crew
Notes, and so on, they are not manipulated in this way. Both of these instances are hosted on rack-mounted
servers and are available as a Web service, on any computer.

We also maintain two ‘development’ instances for testing and evaluating problems. One such instance is
on a rack-mounted server, and another is maintained on SSC computers in a laboratory, in the event that
a problem cannot be replicated with the rack-mounted server system (due to operating system or browser
incompatibility.)

We maintain an experiment tracking Web page that uses the TOCA JSON files for schedule requests and
TOCA analysis results to help track crew recommendations, analysis results, and actual TOCA performance.

In addition to the JSON files that populate the Web pages, changes to the schedule, including requests
made by the crew, are downlinked in a single JSON file. The contents of this file are formatted in such a
way that the flight control team can easily read them, and emailed to the team.

VI. AMO Operational Complexity

Parameter TOCA SSC Total ISS

Data items 22 161 183 170K

Displays 13 185 198 5K

Procedures 12 7 19 4K

Plan Steps 6 0 6 .5K

Constraints 10 0 10 .2K

Faults 70 207 277 13K

Figure 16. Quantification of AMO Operational Complexity, measuring key operational parameters. Estimates of the
corresponding ISS operational parameter measurements are included for comparison.

As described earlier, the AMO concept involved transitioning operations responsibility, such as making
plans, executing those plans, monitoring data, and responding to faults, from MCC to the crew. The difficulty

16 of 24

American Institute of Aeronautics and Astronautics

of these operational tasks is quantified by assessing the ’size’ of the problem, in terms of task parameters.
In this section we discuss those parameters, and how they were measured for the AMO experiment. This
provides a basis for understanding how much of a hypothetical future space mission’s future operations were
demonstrated by this experiment. A summary of the parameters is shown in Figure 16, with a description
of each item in the following paragraphs.

The number of individual data items produced by the systems is a simple measure of how much work
is required to maintain awareness of the system’s state. This measure is somewhat misleading, as the data
rate, data delivery frequency, and frequency with which the data can change are not measured, but serves
as a good first assessment of the difficulty of keeping tabs on these systems. For TOCA the number of data
items is the subset of TOCA parameters selected for display to the crew; for SSC it is the number of data
items for all SSC computers onboard. The large number of SSC data items reflects the fact that there are 7
data items per SSC, and 23 SSCs onboard ISS.

The number of displays organizing the data is another measure of how much work is required to maintain
awareness of the system’s state. Since multiple data items are combined on single displays, and a data item
may appear on multiple displays, there is a complex relationship between the number of data items and the
number of displays. For TOCA, the displays includes the Results tab and Activity History, plus each plot in
the Data tab. For SSC, the displays includes the Overview tab, each SSC Details page, and a plot for each
SSC parameter; since there are 23 SSCs, the total number of displays is higher than the number of SSC data
items.

The number of procedures for operating the systems is a measure of the complexity of executing plans for
the systems. Procedures are step-by-step sets of instructions for operating systems; procedure steps typically
take minutes to perform. The procedures for TOCA and SSC that the crew may be called upon to perform
are easily counted. However, of these procedures, only a small number are nominal procedures (7 for TOCA,
none for SSC), and the remainder were not used during the experiment. Similarly, the procedures may vary
widely in the number of steps, and not all steps may be executed.

The number of plan steps is also a measure of the complexity of creating plans for the systems. A plan
step for TOCA corresponds directly to performing a single procedure. As described, plans span three weeks,
with between one and three activities a week. The typical plan averaged two activities a week. There were
no plans for SSC management during the experiment.

The number of operational constraints that limit the set of acceptable plans is an additional measure
of complexity of creating plans. To quantify the number of plan constraints for TOCA plans, we use those
constraints in Figure 10, plus the TOCA duty cycle constraint, priority rule for ordering activities in the
same day, and the constraint that Calibration activities must occur on consecutive days.

Finally, the number of faults and fault responses measure the complexity of managing systems in the
presence of faults. For TOCA, we include TOC Off nominal, anomalous TOCA historical comparison for
each of the 22 processing states, and the faults described in Figure 13. This count is not completely realistic;
the two most common failures of TOCA are the empty sample bag and sensor faults, and it is somewhat
misleading to consider anomalies in each state separately. For SSCs we include faults for each SSC parameter
threshold, plus two additional conditions (SSC offline, and SSC connected to two networks).

These numbers can be compared to the overall operational complexity of the ISS as a whole; hundreds
of thousands of data items, thousands of displays and procedures, hundreds of operational constraints, plan
steps of multiple hundreds per day, and tens of thousands of faults and responses. It is also important to
realize that the ISS crew managed TOCA and SSC systems for at most 10 minutes per week, while they
performed their other tasks. When viewed this way, the AMO experiment appears quite modest. However,
the demonstration is important because it required ISS crews to manage critical ISS systems, in the flight
environment. This required accurate characterization of all of the operational constraints, commands, and
data, as well as seamless integration of AMO software with ISS systems. It is, therefore, a complete test of
crew autonomy.

VII. AMO Software Performance and Lessons Learned

In this section we describe the AMO software usage statistics, performance, and lessons learned. For
software usage statistics, we describe which parts of the software were used, and how often. By performance,
we refer to how well the software components performed compared to flight controller inputs, or assessment
of faults and anomalies. Specifically, for the Scheduler, we analyze how often the scheduler recommended an

17 of 24

American Institute of Aeronautics and Astronautics

System Screen Uses % Total

Main - 32 15%

TOCA all 149 67%

TOCA Results 48 32%

TOCA Plan Input 41 27%

TOCA Data 35 23%

TOCA References Procedures 14 9%

TOCA Fault Indicators 4 2.5%

TOCA Components Functional Overview 3 2%

TOCA References Software Fault Messages 3 2%

TOCA References Analysis Plot Descriptions 1 .5%

SSC all 36 17%

SSC Overview 21 58.3%

SSC Details 13 36.3%

SSC References Procedures 1 2.7%

SSC Data 1 2.7%

Figure 17. On-orbit usage of AMO UI elements.

activity that was also recommended by flight controllers; for IMS we assess how often an anomaly was truly
considered anomalous; for HyDE we analyze how often faults were detected and whether they were truly
faults; and finally, we analyze whether or not faults were diagnosed correctly.

VII.A. AMO On-Orbit Usage Statistics

On orbit keystroke data was logged every time the software was used for the entire duration of the experiment.
Each interaction with a specific component of the AMO UI was logged to enable analysis of design features.
The logs contained time-stamped entries for every interaction with the software that indicated the device
used to view the software (SSC, iPad), the browser (Internet Explorer, Safari, etc.), and the software feature
used.

Before the logs could be analyzed, the data needed to be processed. Some features of the software would
create multiple entries for one action. For example, whenever a user selected a plot from the drop down
list on the TOCA Data tab, one entry would record the plot that the user selected, while the following
entry would log activity for the previous plot. If the data was counted without being cleaned, the frequency
count for selecting a plot from the drop down list would be double the actual frequency. A similar problem
with the raw keystroke logs occurred was seen when users interacted with charts. Abstracting usage of the
sliders to zoom required scrubbing 11 log entries, and abstracting a single click and drag to zoom required
scrubbing 8 log entries. During the experiment 22 sessions were recorded and analyzed over the duration of
the experiment. Crew used iPads and SSCs equally to access the software. Figure 17 summarizes the uses
of the main UI elements of AMO. The percentages for usage for Main, TOCA - all and SSC - all sum to
100%, and the percentages within each category are calculated compared to the total number of times each
UI element was used for each subsystem.

From this usage data, it is plain that the bulk of the time spent by crew was on TOCA functions.
Given that TOCA was the centerpiece of the experiment and hence instructions to the crew, and the high
complexity of TOCA operations, this is unsurprising. For TOCA, the bulk of the time is spent analyzing
results, drilling down into data, or managing the plan. A small amount of the activity involves referencing
procedures or looking up TOCA component descriptions or errors. By contrast, for SSC, the bulk of the
time spent was on either the Overview or Details pages.

18 of 24

American Institute of Aeronautics and Astronautics

VII.B. AMO Performance

Overall, the AMO software performed well during the experiment. Qualitative analysis from interviews with
flight controllers and crew are still being analyzed, but the preliminary results from all users have been very
positive. The crew used the software to analyze TOCA performance 15 times, and on 14 of those occasions
correctly identified TOCA performance. In four of those 15 cases, TOCA was off-nominal; the sole crew error
was incorrectly identifying one of these cases as nominal. As noted in Section VII.A, crews also used the
software to manage SSC laptops; unfortunately, their use of AMO was limited.

Before quantitatively analyzing performance during the experiment, we describe one use case on-orbit,
and some reactions of the crew to the software. During the crew’s first use of AMO to analyze a Bag Sample
activity, the bag was underfilled and TOCA aborted the analysis. The crewmember successfully used AMO to
diagnose the failure, and called down with the correct recommended next action. The conversation during this
failure was very clear, without multiple back and forth questions between MCC and the crew, as witnessed
during previous instances of this failure. This streamlined communication would be considerably simpler in a
time-delay scenario. Flight controllers in the MCC also reported referencing the AMO software in real time to
help diagnose the problem. Post-flight crew debriefs were conducted with each crew member. While this data
is still being analyzed, both crews and flight controllers felt that AMO helped crew manage TOCA effectively.
The bulk of the crew responses pertained to TOCA situational awareness and fault management functions.
A representative quote: “Understood the underfilled bag case immediately, all made sense to me. I looked at
the bag, and sure enough the bag was empty, I knew exactly what was going on.” Crew also commented that
the software design should be extended to other ISS systems, and that this was the appropriate direction for
enabling autonomy. A representative quote: “This is the way we ought to be heading. I know it is difficult
to gather all that info, but if you could do it for other systems, it would be great!”

All AMO software performance analysis is performed for TOCA related functions. The TOC and TOC
trend analysis was quite straightforward, and classified TOC performance (both individual measurements
and trends) correctly 100% of the time; as a consequence, we do not discuss this aspect of the software
performance further. While the SSC function ran on-orbit, and generated dozens of alerts, as noted above, it
was not heavily used by the crew. Also, unlike for TOCA, the alerts were not easily associated with faults or
anomalies where a ’ground truth’ for correctness of performance was available. The remainder of this section
is devoted to analyzing software performance on TOCA scheduling and fault management functions.

Function Analyses Correct Score

Scheduler 31 28 90 %

IMS 59 52 88 %

HyDE (detect) 59 59 100 %

HyDE (diagnose) 59 57 96 %

Figure 18. AMO Performance.

VII.C. Scheduler performance

The Scheduler performance was very good. The Scheduler recommendations were incorrect in only 3 of 31
cases. In one instance, the Scheduler recommendation was incorrect because the TOCA activities were not
uplinked to ISS. In this case, the problem was a ‘process’ issue rather than a software design problem or
bug. The second instance occurred because MCC needed to schedule a Calibration Check one week early
due to a full timeline the week it was due (according to the constraints). This extra early run of TOCA
would also cause the waste water bag to become full earlier than the software predicted. Thus, for this
week, the AMO software and the crew recommended only a Hose analysis when a Calibration Check, Waste
Water Bag changeout, and a Hose analysis was required for the future week. It turned out that once the
new schedule was uplinked, the Scheduler processed it and created the recommendations as expected, but
there was no crew use of the software after the schedule uplink. Hence, strictly speaking, this case involves
another ’process’ issue rather than a design flaw or bug.

The third Scheduler issue was different. In the last week of January, the Scheduler recommended an extra
Bag sample for 1/30/2015. When making recommendations for a given week, the scheduler does not look
beyond the end of that week while looking for the last completed or pending execution of a given activity.

19 of 24

American Institute of Aeronautics and Astronautics

The last Bag sample was done on 12/31/2014. The end of the week in which 1/26/15 occurred is 1/31/2015,
and there was a Bag sample scheduled for 2/2/2015. According to the Bag sample constraints (every 30
days), the Scheduler recommended the Bag sample for 1/30/2015 and ‘ignoring’ the scheduled activity on
2/2/2015, because 2/3/2015 is in the ‘next’ week. Notice the Scheduler does not maintain a ’moving’ notion
of a week ahead, but ‘rolls’ the week on Friday. This case hilights a design flaw in the Scheduler that leads
to the incorrect recommendation; the solution is to extend the ‘lookahead’ of the scheduler or roll the week
to cover this case.

Throughout the experiment, there were a few instances where a task was moved a few days earlier or
later which bumped it into a different “week”. These instances were marked as correct via crew and software
recommendations because both the crew and software had correctly identified the need for the activity and
the when aspect of scheduling an activity was out of scope for this experiment. In addition, there was one
unusual case that arose in pre-flight testing that the Scheduler would not handle correctly, in which two
Hose samples were scheduled in the same week. In practice, this almost never happens, but a temporary plan
caused the Scheduler to produce unexpected results when two Hose samples were scheduled in one week.
After this, we introduced a check to ensure no plan uplink with two Hose samples in the same week was
uplinked.

VII.D. Anomaly and Fault Detection performance

In this section we discuss the combined performance of the anomaly and fault detection functions. These
functions were designed to warn if TOCA was not behaving as expected, or to identify faults if one occurred.
When TOCA experienced a problem, it would sometimes abort processing of a sample. On other occasions,
however, processing would complete and report TOC results, but TOCA would enunciate a fault message.
Since TOCA enunciates faults, it is worth knowing when these enunciated faults occur in conjunction with
IMS and HyDE results. Also recall that the UI contains nominal performance regions for most (but not all)
of the per-run TOC parameters used by IMS to detect anomalies. Since the UI can direct attention to the
TOCA processing phase and time at which unusual behavior takes place, it is also interesting to know when
IMS results are correlated with deviations from the nominal performance region. A summary of the samples
in which some evidence of a fault or anomaly is shown below in Figure 19.

Sample Aborted IMS HyDE TOCA Fault Perf. Region SME off-nominal

2100 Y N Y N N Y

2089 Y N Y Y N Y

2115 N Y Y Y Y Y

2091 N Y Y Y Y Y

2088 N Y N N Y Y

2096 N Y N N Y N

2134 N Y N N Y N

2119 N Y N N N Y

2090 N Y N N N Y

2131 N Y N N N N

2101 N Y N N N N

2097 N Y N N N N

Figure 19. AMO Off-nomimal Performance for TOCA samples.

We begin our discussion of performance with the two samples in which TOCA processing was aborted. In
these cases, HyDE reported a problem but IMS did not. When TOCA aborts, logging of performance data
from the hardware terminates and IMS has no data points to process after the abort. On the one hand, this
makes it less surprising that IMS does not identify an anomaly in these abort cases. However, since TOCA
halts operation for some reason, one might expect IMS to report something wrong. Of particular interest is
the case in which TOCA produced a fault message (2089); it is worth considering whether IMS should have
reported an anomaly in this instance. The conservative conclusion is that these are ’false negatives’ for IMS;

20 of 24

American Institute of Aeronautics and Astronautics

however, it is possible that a TOCA component other than the Liquid Loop is responsible for the abort.
There were ten samples on which IMS flagged an anomaly; as noted above, none of these were cases in

which TOCA aborted. Of these ten, there were two cases in which IMS detected an anomaly, and HyDE
also detected a fault. As expected, IMS is more sensitive than HyDE, and detects off-nominal situations
without an obvious fault. In five of the ten cases in which IMS detected an anomaly, one TOCA parameter
was also outside the nominal performance region. The remaining five cases are those in which IMS is the
only component that is reporting something off-nominal. The use of IMS to determine anomalies and guide
the users to the right part of the plot is a potential benefit, since there are many plots, and deviations from
the nominal performance can be hard to find due to plot resolution. Recall that two TOCA parameters are
not available for display on the Data Tab (due to a recommendation made by the Subject Matter Experts
(SME)s early in design); it is possible these data values were outside their nominal performance regions when
these IMS anomalies were detected.

VII.E. IMS performance

IMS performance was good. In Figure 18 above we see that IMS was consistent with SME assessment
of TOCA behavior 88% of the time. Of the ten IMS identified anomalies, the flight control team agreed
they were anomalous on five occasions. Thus, there were five IMS errors that were ‘false positives’, that
is, IMS indicated a TOCA run was ’nominal’ when flight controllers or analysts considered it ’off-nominal’.
In five cases (samples 2131, 2101, 2097, 2096, 2134), IMS reported an anomaly but SMEs still deemed
TOCA performance acceptable. Two of these cases (samples 2096 and 2134) also showed at least one TOCA
parameter deviated from the nominal performance regions. As noted in Section VII.D, there were two aborts
in which IMS did not report anomalies. These are considered IMS ‘false negatives’. The seven IMS errors
are the combination of the false positive and false negatives.

Tuning IMS was challenging for several reasons. During IMS configuration, it was observed that transients
between states were hard to train for IMS. There were typically transients between states that simply had
to be ignored. IMS could have been retrained on new datasets throughout the experiment, and it is possible
that fewer false positives would have resulted if we had done so. However, this was not operationally easy
to do for two reasons. First, it was difficult to actually change the AMO software load without significant
overhead. Second, it was not possible to re-analyze all previously analyzed TOCA samples and revise their
anomaly scores for presentation to the crew or flight controllers, which could have raised questions about
discrepancies that we felt would complicate the experiment.

VII.F. HyDE performance

HyDE performance was very good. In Figure 18 above we see that HyDE had a perfect score in terms of
detection of faults; that is, HyDE detected faults every time a TOCA fault occurred, and never announced
a fault if no faults occurred. HyDE’s diagnosis rate is lower, indicating it misdiagnosed faults. Specifically,
HyDE correctly diagnosed two of four faults. We discuss this performance more thoroughly below.

On Sample 2091, the sample was aborted and HyDE TOCA detected a fault. The Crew also reported an
off-nominal performance and recommended the same response as the software recommendation: that TOCA
be checked for water leaks. The actual cause of this off-nominal performance was a bad buffer container. This
failure mode is not included within AMO software as it was never envisioned during software development.
Hence, even though HyDE correctly detected the fault, the diagnosis was incorrect. Interestingly, sample
2091 was a Hose sample, but the diagnosed fault was an empty Bag; this type of fault should not occur in
conjunction with this activity, and therefore could be addressed by the model.

On Sample 2115 HyDE diagnosed a fault with the chiller, due to a high temperature alert. This diagnosis
was incorrect, because (unbeknownst to HyDE), a failure outside of TOCA caused high temperatures in the
cabin, which in turn led to the TOCA temperature trip. In this case, HyDE did not have this fault mode
modeled, although this possible explanation was actually present elsewhere in the AMO software (specifically
in the plot descriptions). Once again, HyDE successfully detected the problem, but could not diagnose the
true fault, since it was not modeled. Unlike the previous HyDE diagnosis error, this incorrect behavior is
due to an ‘external’ event; cabin temperature data was not easily available to the AMO application, and
furthermore it would be difficult to successfully limit the scope of external events or environmental conditions
to model in HyDE.

21 of 24

American Institute of Aeronautics and Astronautics

Some other notes concerning anomaly and fault performance are worth mentioning. A total of eight abort
cases were available to test HyDE, including cases observed prior to and during the experiment. In one case
observed prior to the experiment start, HyDE should have reported at least a potential sensor failure in the
case of an abort, revealing a second problem with the HyDE model. In addition to the external event seen
in Sample 2115, we saw one additional case prior to the experiment in which an external event caused a
TOCA fault condition. In this case, the unexpected shutoff of the nitrogen line to TOCA during operations
resulted in an under-pressure event that was misdiagnosed as a TOCA fault.

VII.G. Additional Lessons Learned

In addition to the specific flight performance related lessons learned, there were several other useful lessons
in deployment of the technology that we mention here.

The data-driven nature of IMS and the model-based HyDE facilitated software reuse, which dramatically
reduced software development time. The Scheduler was implemented from scratch rather than reusing existing
model-based planning or scheduling software due to the relative simplicity of the scheduling problem at hand.
However, it was implemented in a data-driven manner to facilitate changes to scheduling frequencies. It is
notable that the project went from concept to implementation in roughly 12 months, including the integration
of these components which had never been integrated before. This schedule would not have been possible
without the existence of these highly reconfigurable reasoning engines.

AMO logs and downlink data were moved to a specific folder on LS1 (refer to Figure 8) for downlink.
These files were moved on a schedule consistent with the three times a day downlink schedule. The logs and
on-orbit data produced by AMO was large enough that if there was a problem, we could store up to four
downlink files a day. We found that on weekends, and occasionally during the week, a combination of factors
(short downlink windows plus MCC coverage) led to exceeding the file system limit, leading to corrupted
downlinks. We negotiated an increase to the size of the folders and a change in the strategy for downlinks
(repeat tries to reduce the chances that a communication outage would cause us to miss our window), and
this resolved the problem.

The temperature of a bag sample was manually entered in a portion of the activity description called
the Execute Notes in the crew’s plan. Specifically, the temperature was not part of the activity or procedure
name. This critically impacted the Scheduler: without a reliable way of knowing the temperature of the Bag
sample, we would be unable to correctly schedule the next Bag sample. The temperature usually could be
automatically extracted from the Execute Note, but on occasion it was not present due to failures of process.
We either added the temperature manually, or used default rules to guess which temperature was needed.
Other inconsistencies in activity names in the plan occurred as well, e.g. with Buffer Changeout activities.

During development, we learned there would be a change in the TOCA flight hardware prior to the
start of the the experiment. This change most profoundly affected IMS and HyDE, since the change altered
both the behavior of the device, and therefore the anomalies, but also the TOCA data log format; this
meant significant changes to the code that processed TOCA logs and generated inputs for IMS and HyDE.
The change also impacted the Scheduler; previously, TOCA analyses were short enough that two could,
conceivably, be performed in a single day. However, the new generation hardware was only able to process
a single TOCA sample per day. In addition, a small number of scheduling rules changed as well, e.g. the
number of TOCA samples needed prior to a buffer changeout increased. Significant changes were needed to
retrain IMS and MMS, and to revise the JSON writer to generate the plots correctly. While this change did
cause some reworking of the software, on balance the model- and data-driven foundations of the server side
components required little reprogramming.

A concurrency bug in TOCA occasionally resulted in each TOCA activity record being duplicated. This
led to some IMS false alarms during development, in which TOCA samples that should not have exhibited
anomalies did so. The source of the bug was not identified until after operations (it only manifested during
certain types of TOCA activities). The replicate records behavior occurred during the experiment, however,
to our knowledge, none of the IMS ’false alarms’ we experienced during the experiment were caused by this
behavior.

As noted, AMO requires processing the crew plan to extract TOCA activities for use by the Plan Input
tab. Early in development, we had planned to perform this function onboard ISS; the crew’s plan is uplinked
to LS1, and the data file and format were sufficiently well characterized that on onboard function was feasible.
However, other software development work was planned that would change the file format at roughly the
same time as the experiment, so we opted to be conservative and do our processing on the ground.

22 of 24

American Institute of Aeronautics and Astronautics

The AMO logic to detect that an SSC was simultaneously wired and wireless wasn’t perfect. An Icinga
command called “check arp” that looks up addresses and sees if the address returns multiple MAC addresses
using the ”arp” command. Both DNS and ARP cache their data so it may be that the cache is stale, but
it should give an indication that the crewmember either switched to WiFi without running the windows
program to reconfigure the network, or that they’ve left both the wireless and ethernet active, sometime in
the recent past. Unfortunately, we found that SSC laptops were often left untended for long periods of time,
and that the results were sometimes inaccurate.

A combination of unexpectedly high AMO component processing times and a process kill bug led to
problems. Processing times on orbit were sometimes as much as six times larger than were anticipated or
recorded during testing on the ground. Processing times varied significantly throughout the experiment;
while the reboot of the computer our software runs on would sometimes lead to a reduction in processing
times, they would then increase again, sometimes in as little as 24 hours. As a result of this unexpectedly high
processing time, the AMO Monitor sometimes issued a process termination to sub-processes that were taking
too long. Unfortunately, this revealed an unforeseen bug in the software package that issued the termination
notice. Once this was uncovered, it was decided to change the timeouts in order to allow processes to complete
normally. AMO was designed to read its configuration file constantly, so changes to the configuration (once
we figured out what we needed) were trivial. In addition to this problem, downlink processing required a
process running on a computer at ARC to retrieve and push the downlinked data to our mirror servers. On
occasion, this process crashed and needed restarting. It was sometimes not clear which element of the data
processing pipeline had failed.

Figure 20. Changes in ICINGA processing times between April and June.

VIII. Conclusions and Future Work

The AMO experiment conclusively demonstrated that an autonomous crew can use decision support
software to manage plans, monitor system performance, and detect and respond to off-nominal and fault
conditions. The AMO software designed and developed for this experiment included a combination of existing
and custom components providing the needed planning, monitoring and fault management functions. These
functions were implemented using highly reconfigurable software components, making a very aggressive
development schedule feasible. As shown in the usage statistics (Figure 17), all elements of the AMO software
were used during the experiment. The performance results for TOCA showed that software accuracy, across
all functions, exceeded (88%). After resolution of the software concurrency bug, AMO ran on-orbit problem
free for seven months. Qualitative analysis from interviews with flight controllers and crew are still being
analyzed, but the preliminary results from all users have been very positive. The crew used the software to
analyze TOCA performance 15 times, and on 14 of those occasions correctly identified TOCA performance.
In four of those 15 cases, TOCA was off-nominal; the sole crew error was incorrectly identifying one of these
cases as nominal.

The bulk of the issues discovered that impacted performance were process related (e.g. Scheduler uplink)
or environmental conditions or faults that were ground-ruled out for the experiment (e.g. for HyDE). It
is possible that changing IMS during the experiment would have led to increased performance, but this
operational change was also out of scope of the experiment.

23 of 24

American Institute of Aeronautics and Astronautics

As described in Section VII.B, overall AMO software performance on TOCA management activities was
very good. Individual components performed quite well, but not perfectly. Lessons learned from the problems
and errors in the software can be categorized as follows:

1. The IMS error rate was partially a function of the existing training examples. New IMS models could
have been generated from more on-orbit data, and could potentially have lowered the error rate.
However, the other contributor to the error rate, the transition between processing states, is harder to
address, and it is likely that some false positives cannot be eliminated.

2. The recommended action from IMS could have identified the Liquid Loop parameter maximally con-
tributing to the anomalies. However, this was not feasible due to timing constraints, and also due to
the early decision not to make all Liquid Loop parameters available to the crew. The solution to this
problem is to ensure all data used in analysis can be seen by the crew.

3. Fault modeling deficiencies led to low HyDE success rate in diagnosis. The HyDE modeling problems
require examples of the faults for regression testing. However, the case of external cabin temperatures
requires identifying cabin temperature data, which was not easily available to the application due to
the deployment configuration, as well as augmentation of the model.

4. Algorithm design caused one Scheduler error. This problem can be addressed by extending the Sched-
uler’s ’lookahead’ distance to correctly identify scheduled activities.

5. Process problems caused two Scheduler errors. These problems can be addressed by improved operations
process.

6. While SSC lessons learned are scarce due to lack of ground truth and limited use, the lack of accuracy
of the wired and wireless connection state is an obvious area of improvement.

As noted in section VI, the tasks and systems used in this experiment represent a small part of the
operational needs of a future exploration spacecraft. Further experiments with ISS and ground analogs are
needed to continue fleshing out autonomy enabling technologies, concepts of operations, system designs, and
lessons learned.

Acknowledgements

This project was the work of a large team of dedicated individuals; the authors gratefully acknowledge
the hard work and dedication of Ilya Avrekh, Vicky Byrne, Lionel Delmo, Peter Morgan-Dimmick, Tyler
Doubrava, Travis Fitzgerald, Nicholas Fritz, Jayleen Guttromson, Elisca Hicks, David Korth, Jenessa Lin,
Harry Litaker, Brian Martin, Jason Mintz, Lee Morin, Chad Morrison, Jayanta Ray, Landon Sommer, Hao
Thai, Abe Velazco, Shawn Wolfe, and all of the flight controllers and crew who flew the ISS during this
experiment. This work was funded by the NASA Advanced Exploration Systems (AES) Program.

References

1Rader, S. N., Regan, M. L., Janoiko, B., and Johnson, J. E., “Human-in-the-Loop Operations Over Time Delay: NASA
Analog Missions Lessons Learned,” Proceedings of the AIAA International Conference on Environmental Systems, 2013.

2Frank, J., Spirkovska, L., McCann, R., Wang, L., Pohlkamp, K., and Morin, L., “Autonomous Mission Operations,”
Proceedings of the IEEE Aerospace Conference, 2013.

3Beisert, S., Rodriggs, M., Moreno, F., Korth, D., Gibson, S., Lee, Y. H., and Eagles, D., “Development and Execution of
Autonomous Procedures Onboard the International Space Station to Support the Next Phase of Human Space Exploration,”
Proceedings of the AIAA Space Conference, 2013.

4Iverson, D., “Inductive System Health Monitoring,” Proceedings of the International Confernce on Artificial Intelligence,
2004.

5Narasimham, S. and Brownstone, L., “HyDE - A General Framework for Stochastic and Hybrid Model - Based Diagnosis,”
Proceedings of the 18th International Workshop on the Principles and Practices of Diagnosis, 2007, pp. 162 – 169.

6Clancey, W. J., Sierhuis, M., Seah, C., Buckley, C., Reynolds, F., Hall, T., and Scott, M., “Multi-Agent Simulation to
Implementation: A Practical Engineering Methodology for Designing Space Flight Operations,” Engineering Societies in the
Agents’ World VIII , edited by A. Artikis, G. O’Hare, K. Stathis, and G. Vouros, Springer, 2008, pp. 108–123.

24 of 24

American Institute of Aeronautics and Astronautics

	Introduction
	Autonomous Operations Hardware and Concept of Operations
	Crew Autonomous Operations Activities
	Total Organic Carbon Analyzer (TOCA)
	Station Support Computer Laptops
	Deployment Environment

	 AMO Software Design and Architecture
	 The User Interface
	TOCA UI
	SSC UI
	Help UI

	SSC Data Collection
	Air to Ground Link
	The AMO Server Components
	Monitor
	Scheduler
	Anomaly Detection
	Fault Diagnosis
	 JSON Writer
	SSC Limit checks

	 AMO Server Component Integration
	AMO Ground System
	AMO Operational Complexity
	AMO Software Performance and Lessons Learned
	AMO On-Orbit Usage Statistics
	AMO Performance
	Scheduler performance
	Anomaly and Fault Detection performance
	IMS performance
	HyDE performance
	Additional Lessons Learned

	Conclusions and Future Work

